

WRESL+ Language Reference

Draft Documentation

April 2013

WRESL+ Reference 2 March 2013

Contents
WRESL Language Overview .. 5

WRESL+ Updates ... 5

Quick Start ... 6

Notation Conventions ... 7

Source Form ... 7

Variable Names and Labels ... 7

Comments .. 7

Mathematical and Logical Operators... 8

Expressions .. 8

Value Expression ... 8

Assignment Expression ... 9

Constraint Expression ... 9

Comparison Expression .. 9

Conditional Expression ... 9

Preprocessed Expressions .. 10

Future Array Expressions .. 11

Sequence Statement ... 11

Model Statements ... 11

Include Statement ... 12

Timeseries Input Declaration ... 12

Decision Variable Declarations ... 13

Continuous Decision Variable .. 13

Bound Specification .. 13

Binary Decision Variable ... 14

Integer Decision Variable.. 14

State Variable Declarations and Assignments... 14

Simple Value State Variable ... 15

Sum Value State Variable ... 15

WRESL+ Reference 3 March 2013

Lookup Table Value State Variable .. 15

Conditional Value State Variable ... 16

Alias Variable Declaration and Assignment... 16

Goal Statement.. 17

Concise Goal Statement ... 17

Simple Goal Statement ... 17

Conditional Goal Statement ... 18

Objective Function Statement.. 19

Standard Objective Function Statement ... 19

Common Weight Objective Function Statement .. 20

Preprocessed Statements ... 20

Initial Statement .. 20

If Statement ... 21

Future Array Statements .. 21

Future Array Decision Variable Declarations .. 22

Future Array Continuous Decision Variable .. 22

Future Array Binary Decision Variable .. 22

Future Array Integer Decision Variable ... 22

Future Array State Variable Declarations and Assignments .. 23

Future Array Simple Value State Variable ... 23

Future Array Sum Value State Variable ... 23

Future Array Lookup Table Value State Variable .. 24

Future Array Conditional Value State Variable ... 24

Future Array Alias Variable Declarations and Assignments ... 24

Future Array Goal Statements.. 25

Future Array Concise Goal Statement ... 25

Future Array Simple Goal Statement... 25

Future Array Conditional Goal Statement... 26

Future Array Objective Function Statement ... 27

Network Statement ... 27

Include Common Items in Multiple Sequences... 27

WRESL+ Reference 4 March 2013

Previous and Future Time Step Values .. 28

Access Variables in Prior Sequence.. 29

Intrinsic Definitions and Functions .. 29

Intrinsic Functions ... 30

Intrinsic Definitions ... 31

daysin ... 31

month .. 31

wateryear .. 31

⟨MMM⟩ .. 31

prev⟨MMM⟩ .. 31

WRESL+ Reference 5 March 2013

WRESL Language Overview
The Water Resources Simulation Language (WRESL) was designed to serve as flexible
language interface to the linear programming (LP) solver. Specific operational rules may
be specified in the WRESL language, which in turns formulates the rules into constraints
and objective function terms in a form acceptable by the LP solver. Data, in the form of
timeseries inputs, prior decision variable values, and relational table values, is all available
to the user when formulating the operational rules.

When writing statements in the WRESL language it is important to recognize the
difference between state variables and decision variables for the time period of interest.
State variables (svar) have known values for the upcoming period and can be thought of
as the information available to planner/operator prior to any system operation. Decision
variables (dvar) are unknown and represent the decisions to be made for the upcoming
period.

WRESL statements are assembled into text files with the wresl extension. The main WRESL
file must contain the model and sequence statements that describe the constraints to be
included in a particular simulation and the order in which models should be solved. Each
model contains several include statements which identify the location of constraints to be
considered. Operational constraints can be assembled in multiple files and placed in
directories aptly named for better organization. Several WRESL language constructs are
available to the user for developing constraints or rules for the water resource system and
are discussed in detail below.

WRESL+ Updates
The WRESL+ parser has replaced the old WRESL parser. The WRESL+ parser adds new
functionalities and is compatible with legacy WRESL files except that the global include
feature is replaced by a new approach to include the same files in multiple sequences (see
Include Common Items in Multiple Sequences).

New additions of WRESL+ include:

1. Future array syntax for multi-period optimization
2. If statement for preprocessing variables and files inclusion
3. Network statement for system grids and automatic continuity generation

WRESL+ Reference 6 March 2013

Quick Start
A simple study may be composed of the following statements:

• Sequence Statement
• Model Statement
• Timeseries Input Declaration
• State Variable Declarations and Assignments (keyword is svar)
• Decision Variable Declarations (keyword is dvar)
• Goal Statement
• Objective Function Statement
• Include Statement

A simple study example is shown below.

sequence CYCLE1 { model First order 1 }
sequence CYCLE2 { model Second order 2 }

model First {
 timeseries I01 { kind 'FLOW-INFLOW' units 'TAF' }
 dvar X1 { std kind 'FLOW-CHANNEL' units 'CFS' }
 dvar X2 { std kind 'FLOW-CHANNEL' units 'CFS' }
 svar C { value I02*5 }
 goal Test { X1 + X2 < C }
 include 'allocation\test1.wresl'
 objective XGroup {
 [X1, 10]
 [X2, 20]
 }
}

model Second {
 timeseries I02 { kind 'FLOW-INFLOW' units 'TAF' }
 dvar Y1 { std kind 'FLOW-CHANNEL' units 'CFS' }
 dvar Y2 { std kind 'FLOW-CHANNEL' units 'CFS' }
 svar X1_Upstream { value X1[Upstream] }
 goal Test { Y1 + Y2 < I02 + X1_Upstream }
 include 'allocation\test2.wresl'
 objective YGroup {
 [Y1, 10]
 [Y2, 20]
 }
}

WRESL+ Reference 7 March 2013

Notation Conventions
This WRESL+ reference uses the following conventions:

1. bold-faced words starting with lowercase represent keywords and must be typed
exactly as shown.

2. Bold-faced words starting with uppercase represent the rule names of statements,
declarations, or expressions.

3. Italic words denote the identifiers, tags, or numbers of your own creation.
4. A group formed by items are enclosed within the angle brackets “⟨ ⟩”
5. If one and only one of options is required, those options are shown separated by a

vertical bar symbol “|”
6. If an item can be matched for zero or more times, it is followed by a star “*”
7. If an item can be repeated at least once, it is followed by a plus sign “+”
8. If an item is optional, it’s followed by a question mark “?”
9. Braces “{ }” provide a visual grouping of statements. You may position braces and

indenting according to your preference, and include optional line breaks and blank
lines. You may also omit line breaks between keywords. The examples in this
document show preferred styles of placement.

10. Example codes are provided inside textboxes.

Source Form
The WRESL+ language is somewhat free-format. You may insert blank lines and
comments at any point. Most statements may be on multiple lines without a continuation
character. Semicolons are not allowed at the end of statements. The WRESL+ file is read
sequentially, in that the statements read and process in the order that they appear in the
file. Note that variables must be declared before they can be used in other statements.

Variable Names and Labels
The WRESL+ variable name and label character set consist of letters A-Z, digits 0-9, and
the “_” character. Decision and state variable names may be up to 16 characters long.
Labels and other tags may have 32 characters. Mixed case is ignored.

Comments
Comments may be enclosed in /* and */ or introduced on a single line by !.

WRESL+ Reference 8 March 2013

Mathematical and Logical Operators
Mathematical operators in the WRESL language are similar to those in other programming
languages. A summary of the operators are shown below.

Operator Description Operator Type
+ addition mathematical
- subtraction mathematical
* multiplication mathematical
/ division mathematical
< less than or equal mathematical
> greater than or equal mathematical
= equal mathematical

<= less than or equal logical
>= greater than or equal logical
== exactly equal logical

.ne. not equal logical
.and. logical conjunction logical
.or. logical inclusive disjunction logical

.not. logical negation logical

In addition to the operators shown above, several intrinsic definitions and functions are
available for use in WRESL statements. See Intrinsic Definitions and Functions.

Expressions
Expressions are formed by numbers, variables, functions, and operators. Value
expressions are used to express value; assignment expressions are used to set the value
for the variables; constraint expressions are used to set LP constraints in Goal statements;
comparison expressions and conditional expressions are used to set conditions.

Value Expression
A value expression is a single item consists of number, variable, and function; or a group
of these connected by mathematical operators. For example,

/* This is a
comment */

! This is another comment

WRESL+ Reference 9 March 2013

Assignment Expression
An assignment expression is formed by single variable at the left hand side followed by
equal sign and then value expression.

 Variable = Value Expression

Constraint Expression
A constraint expression is used to specify LP constraint inside Goal statement. It’s formed
by two value expressions separated by ⟨ = | > | >= | < | <= ⟩. Note that the double equal
sign “==” is not valid in constraint expressions.

 Value Expression ⟨ = | > | >= | < | <= ⟩ Value Expression

Comparison Expression
A comparison expression is the building block for conditional expression. It’s formed by
two value expressions connected by ⟨ == | > | >= | < | <= ⟩. Note that the single equal sign
“=” is not valid in comparison expressions.

 Value Expression ⟨ == | > | >= | < | <= ⟩ Value Expression

Conditional Expression
A conditional expression is a Comparison Expression, or a group of Comparison
Expression separated by ⟨ .and. | .or. | .not. ⟩. Parentheses can be used to specify order

5.0 ! value expression can be a single variable or number

X + Y - Z * max(A, B, C) / 9.0

X = Y + Z * max(A, B, C)

X = Y + Z * max(A, B, C)

X + Y = Z * max(A, B, C)

X + Y > Z * max(A, B, C)

X + Y == Z * max(A, B, C)

WRESL+ Reference 10 March 2013

of operations. The main restriction on conditional expressions is that they may not
contain any current-period decision variables.

 ComparisonExpression ⟨ ⟨ .and. | .or. | .not. ⟩ ComparisonExpression ⟩*

In lieu of a conditional expression, you may specify the keyword always. Such a condition
will always evaluate as true, and thus will always be selected unless a prior case was
evaluated as true.

Preprocessed Expressions
The value expressions in the Initial Statement and the conditional expressions in the If
Statement cannot contain any time-varying or run-time evaluated variables. They are
processed only once during the parsing stage and stay constant afterwards.

X + Y == Z * max(A, B, C)

X + Y >= max(A, B, C) .and. (month > oct .or. Z < 5.0)

svar NMTest {
 case February {
 condition month == feb
 value S10(-12) + sumI10_part }
 case Others {
 condition always
 value S10(prevfeb) + sumI10_part }
}

initial {
 svar A { value 10. }
 svar B { value A*5 }
 svar C { value B+6.0 }
}

 if A+B>15. {
 include 'swp_dellogic\allocation\co_extfcn.wresl'
 include 'Delta\DeltaExtFuncs_7inpANN.wresl'
}

WRESL+ Reference 11 March 2013

Future Array Expressions
The symbol “$m” can be used in the Future Array Statements to simplify the code. It
means iteration from current timestep to the maximum future timestep.

Sequence Statement
Sequence statements define the order and optional condition in which to simulate a study
consisting of multiple models. For example, it may be desirable for the modeler to operate
a portion of the water resource system independent of the remaining system. In this case,
the system would be divided into two models: the first includes the portion to be operated
independently and the second includes the remaining part of the system. The first model
is given the simulation order 1 and the second model is given the simulation order 2. The
results of simulating the first model can be used in the second model. Each model must be
given a unique simulation order.

sequence SequenceName {
 model ModelName
 ConditionalExpression?
 order orderNumber
 ⟨ timestep 1mon | 1day ⟩?
}

The conditional expression is evaluated before the sequence starts; therefore the
variables in this expression must have known values. The default time step in a
sequence is one month, but can be changed to be one day.

Model Statements
The model construct defines which statements will be part of a particular model
formulation. Multiple models may be specified within a study given that they have a
unique simulation order. All goals, objective functions, include statements, and run-time
evaluated variables must be located within the model construct.

S_trnty_3($m) < S_trntyLevel3adj($m) - S_trntyLevel2($m)

sequence CYCLE1 { model Upstream order 1 }
sequence CYCLE2 { model Base order 2 timestep 1mon }
sequence CYCLE3 { model Test order 3 timestep 1day }
sequence CYCLE4 { model Test2 condition MON==jun order 4 }

WRESL+ Reference 12 March 2013

model modelName {
 IncludeStatement?
 TimeseriesInputDeclaration?
 StateVariableDeclarations?
 DecisionVariableDeclarations?
 AliasVariableDeclaration?
 GoalStatement?
 ObjectiveFunctionStatement?
}

Include Statement
You may include other WRESL files by inserting an include statement.

include ‘relative wresl file path’

Timeseries Input Declaration
The data stored in the time-series HEC-DSS database can be referenced by using the
following syntax:

timeseries TimeseriesName {
 kind ‘KindSpec’
 units ‘UnitSpec’
 ⟨ convert ‘ToUnits’ ⟩?
}

The B-part of the DSS path name will be set to the user specified TimeseriesName. The
optional convert field will convert between TAF and CFS only. If, for example, ToUnits
is CFS then a conversion will be performed from TAF to CFS.

model Upstream {
 include 'Delta\DeltaExtFuncs_7inpANN.wresl'
 include 'swp_dellogic\allocation\co_extfcn.wresl'
 include 'weight-table.wresl'
}

include 'Delta\DeltaExtFuncs_7inpANN.wresl'
include 'swp_dellogic\allocation\co_extfcn.wresl'

WRESL+ Reference 13 March 2013

Decision Variable Declarations
All variables must first be declared, and thereafter used in subsequent definitions or goals.
There are three types of decision variables and each type will be described separately
below.

Continuous Decision Variable
Continuous decision variables can be declared in the model using the following syntax:

dvar DvarName {
 std | Bound Specification
 kind ‘Kindspec’
 units ‘UnitSpec’
}

The std keyword indicates that the variable will have the standard LP non-negativity
bounds and 1.0e38 upper bound. The Bound Specification, used in lieu of the keyword
std, refers to explicit setting of the variable’s lower and upper bounds (numeric constants
only).

Bound Specification
Bound specification is used to explicitly set the lower and upper bounds of the decision
variable. Only numeric constants are allowed for the UpperBound and LowerBound.

 upper UpperBound | unbounded
 lower LowerBound | unbounded

where unbounded indicates –1.0e38 or 1.0e38.

timeseries I10 { kind 'FLOW-INFLOW' units 'TAF' convert 'CFS' }
timeseries I12 { kind 'FLOW-INFLOW' units 'TAF' }

dvar C_Delta_SWP {std kind 'FLOW-CHANNEL' units 'CFS' }

dvar QPD {lower -100. upper unbounded kind 'FLOW' units 'CFS'}

dvar COSZ {lower unbounded upper 9000. kind 'FLOW' units 'CFS'}

WRESL+ Reference 14 March 2013

Binary Decision Variable
Binary decision variables may be declared in the model by specifying binary as the first
keyword within the braces. A binary variable can only have a value of either 0 or 1. The
use of binary variables may increase computation time.

dvar DvarName {
 binary
 kind ‘Kindspec’
 units ‘UnitSpec’
}

Integer Decision Variable
Integer decision variables may be declared in the model by specifying integer as the first
keyword within the braces. The standard bounds for an integer variable are the same as
for a binary variable (0 or 1). The use of integer variables with non-standard bounds is
discouraged because they may greatly increase computation time.

dvar DvarName {
 integer
 std | BoundSpecification
 kind ‘Kindspec’
 units ‘UnitSpec’
}

State Variable Declarations and Assignments
State variables are used to hold information that may be used in expressions within
subsequent state variable assignments, goal statements, objective function statements,
alias statements, or future array statements. There are several types of state variables and
each type will be described separately below.

dvar B { binary kind 'BINARY' units 'NA' }

dvar Integer1 { integer std kind 'BINARY' units 'NA' }

dvar Integer2 { integer lower 0 upper 3 kind 'INTEGER' units 'NA' }

WRESL+ Reference 15 March 2013

Simple Value State Variable
The simple value assignment uses the Value Expression to set the value for state
variables.

svar SvarName {
 value Value Expression
}

Sum Value State Variable
The sum value assignment specifies the state variable value to be the sum of an
expression using an iterator “i”. iBegin is the beginning index, iEnd is the ending index, and
iStep is the step size. This is especially useful for summing values of timeseries variables
using this syntax to represent the time offset:

svar SvarName {
 sum(i = iBegin, iEnd ⟨, iStep ⟩?) Value Expression
}

Lookup Table Value State Variable
This syntax retrieves a value from a relational database table. It’s a simplified version of
the SQL language. You can specify either or both of the where clause or the given/use
clauses.

svar SvarName {
 select Result from Tablename
 ⟨ given Assignment Expression use ⟨ linear | max | min ⟩ ⟩?
 ⟨ where Assignment Expression+ ⟩?
}

svar X { value 9.0 }
svar Y { value max(X, 5.0) }

svar Z { sum(i=1, 5, 1) S03(-i) + I10(-i) }
svar OroDivEst { sum(i=0,sep-month,1) D_PWR(i) }

svar D_M {select DCU_M from DCU_MAC where MON=jan}

WRESL+ Reference 16 March 2013

Conditional Value State Variable
State variable values may be assigned based upon user specified conditions.

svar svarName {
 case ConditionLabel1 {
 condition Conditional Expression
 SimpleValue, SumValue, or LookupTableValue Assignment }

 case ConditionLabel2 {
 condition Conditional Expression
 SimpleValue, SumValue, or LookupTableValue Assignment }

……

 case DefaultConditionLabel {
 condition always
 SimpleValue, SumValue, or LookupTableValue Assignment }
}

The ConditionLabel is an alphanumeric tag that will be used by the program to label which
condition is being used. The Conditional Expressions are evaluated in the order
specified until one evaluates to true. The final condition must be specified as always for a
default case.

Alias Variable Declaration and Assignment
Alias variable can be defined as a linear combination of previously defined decision
variables. It can be used as a variable in Goal Statement and its value will be available in
the output HEC-DSS file. These help a great deal with brevity and are useful for
understanding the model’s output. If an alias variable is used in the goal statements, it will
be declared as unbounded upper and lower.

alias aliasName {
 Value Expression

svar NMTest {
 case February {
 condition month == feb
 value S10(-12) + sumI10_part }
 case Others {
 condition always
 value S10(prevfeb) + sumI10_part }
}

WRESL+ Reference 17 March 2013

 kind ‘Kindspec’
 units ‘UnitSpec’
}

Goal Statement
Goal statements are used to specify system operating constraints. They can be specified as
“hard” constraints (LP constraint must be satisfied) or as “soft” constraints (LP constraint
may be violated, subject to some penalty). A right-hand-side (RHS) and a left-hand-side
(LHS) can be used to specify the constraints.

Concise Goal Statement
The concise form of the goal statement uses the Constraint Expression. This is a
preferred method for specifying constraints without conditionals or penalties.

goal GoalLabel {
 Constraint Expression
}

Simple Goal Statement
If there are no associated conditionals, then you can use this simple form. If the lhs>rhs or
lhs<rhs statement is omitted, or the keyword constrain is used instead of penalty, the
specified constraint will be a hard constraint. There will be a bound applied, and the solver
will not be allowed to violate it. Note that “<” means “<=” and “>” means “>=” in LP lingo.
Penalty can be a numeric constant or an expression consisting of variables with known
values.

goal GoalLabel {
 lhs Value Expression
 rhs Value Expression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩?

! EstSodExp is a previously defined decision variable
alias EstSod { EstSodExp kind 'ESTIMATE' units 'CFS' }

! Est_rel is a variable with known value
alias Estlim3 { max(300.,Est_rel) kind 'DEBUG' units 'CFS' }

goal Test { X > Y }

WRESL+ Reference 18 March 2013

 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩? }
}

Conditional Goal Statement
The constraints can be specified based on the Conditional Expressions. They will be
evaluated in the order they are presented until the program reaches one that evaluates to
true.

goal GoalLabel {
 lhs Value Expression
 case CaseLabel1 {
 condition Conditional Expression
 rhs Value Expression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩?
 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩? }

 case CaseLabel 2 {
 condition Conditional Expression
 rhs Value Expression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩?
 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩? }

…

 case DefaultCaseLabel {
 condition always
 rhs Value Expression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩?
 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩? }
}

goal NMTest {
 lhs X+Y
 rhs Z
 lhs>rhs constrain
 lhs<rhs penalty 0
}

WRESL+ Reference 19 March 2013

Objective Function Statement
The LP solver will try to find one feasible solution that maximizes the objective function
composed of decision variables and their coefficients. The uniqueness of decision variable
solutions is not guaranteed unless the maximum objective value only occurs at a single
point on the feasible region. The decision variable solution returned by the LP solver is
probably only one of infinitely many solutions that give the same maximum objective
value.

Standard Objective Function Statement
In the standard objective function statement, the first term in the brackets is the decision
variable name, and the second term is the coefficient (or weight) of this decision variable.

objective ObjectiveGroupLabel {
 [VariableName1, Value Expression]
 [VariableName2, Value Expression]
…

 [VariableNameN, Value Expression]
}

goal TestAction1 {
 lhs D_J1 + D_B1
 case April {
 condition month == apr
 rhs CNW + X
 lhs<rhs penalty 0 }

 case Others {
 condition always
 rhs 3000.*16.0/daysin + Z
 lhs<rhs penalty 0
 lhs>rhs constrain }
}

WRESL+ Reference 20 March 2013

Common Weight Objective Function Statement
If a group of decision variables have the same weight in the objective function, the
common weight statement can be used to avoid the repetitions.

objective ObjectiveGroupLabel {
 weight Value Expression
 variable variable1 variable2 … variableN
}

Preprocessed Statements
The Initial Statement and If Statement are processed only once during the parsing stage
and will not be revisited during the study runtime. In the parsing stage, the variables
inside the Initial Statement are evaluated first so the If Statements knows which files to
include.

Initial Statement
The Initial statement currently allows only Simple Value State Variable and Lookup
Table Value State Variable. These variables are processed only once and will not be re-
evaluated after the parsing stage. They can be referenced in the If Statement to
preprocess file inclusions.

objective XGroup {
 [X1, 10]
 [X2, 10]
 [X3, 10]
}

objective YGroup {
 [Y1, 10*Z]
 [Y2, 20*Z]
}

objective XGroup {
 weight 10
 variable X1 X2 X3
}

WRESL+ Reference 21 March 2013

initial {
 Simple Value State Variable| Lookup Table Value State Variable
}

If Statement
If statement can be used to preprocess file inclusions. The dependent variables in the
conditional expressions must be defined in the Initial Statement.

if PreprocessedConditionalExpression {
 Include Statement+ }
⟨ elseif PreprocessedConditionalExpression {
 Include Statement+ } ⟩?
⟨ else PreprocessedConditionalExpression {
 Include Statement+ } ⟩?

Future Array Statements
Future array statements can simplify coding for multi-period optimizations by using arrays
and an iterator to define variables and constraints efficiently

initial {
 svar A { 100 }
 svar B { value A - 5 }
 svar C { select OptionK from Options where IndexB = 2 }
}

if A + B > C {
 include 'swp_dellogic\allocation\co_extfcn.wresl'
}

if Scenario == 1 {
 include 'allocation\case1.wresl'
} elseif Scenario == 2 {
 include 'allocation\case2.wresl'
} else {
 include 'allocation\case3.wresl'
}

WRESL+ Reference 22 March 2013

Future Array Decision Variable Declarations
This syntax can declare and assign an array of decision variables with minimum repetition.
The Future Array Decision Variable Declarations are similar to the standard Decision
Variable Declarations except the FutureArraySize is in parenthesis. FutureArraySize
allows only either numeric constant or a state variable that is assigned to a numeric
constant. For example, FutureArraySize of 6 will generate 6 future variables and one
current variable. There are three types of decision variables (shown below).

Future Array Continuous Decision Variable
dvar(FutureArraySize) DvarName {
 std | Bound Specification
 kind ‘Kindspec’
 units ‘UnitSpec’
}

Future Array Binary Decision Variable
dvar(FutureArraySize) DvarName {
 binary
 kind ‘Kindspec’
 units ‘UnitSpec’
}

Future Array Integer Decision Variable
dvar(FutureArraySize) DvarName {
 integer
 std | Bound Specification
 kind ‘Kindspec’

dvar(11) C_Delta_SWP {std kind 'FLOW-CHANNEL' units 'CFS' }

dvar(23) QPD {lower -100. upper unbounded kind 'FLOW' units 'CFS'}

svar FAMmonths { value 11 }

dvar(FAMmonths) C_Delta_SWP {std kind 'FLOW-CHANNEL' units 'CFS' }

dvar(35) B { binary std kind 'BINARY' units 'NA' }

WRESL+ Reference 23 March 2013

 units ‘UnitSpec’
}

Future Array State Variable Declarations and Assignments
This syntax can declare and assign an array of state variables with minimum repetition.
The Future Array State Variable Declarations are similar to the standard State Variable
Declarations and Assignments except for the FutureArraySize in the parenthesis and the
special symbol $m in the expression. FutureArraySize only allows either a numeric
constant or a state variable that is assigned to a numeric constant. For example,
FutureArraySize of 6 will generate 6 future variables and one current variable. The special
symbol $m is used to iterate the expression from 0 to FutureArraySize. There are four
types of state variables (shown below).

Future Array Simple Value State Variable
svar(FutureArraySize) SvarName {
 value ValueExpression
}

Future Array Sum Value State Variable
svar(FutureArraySize) SvarName {
 sum(i = iBegin, iEnd ⟨, iStep ⟩?) ValueExpression
}

dvar(35) Integer1 { integer std kind 'BINARY' units 'NA'}

dvar(47) Integer2 { integer lower 0 upper 3 kind 'INT' units 'NA'}

svar FAMmonths { value 23 }
svar(FAMmonths) wy { value int((month + $m–1)/12) + wateryear }

svar(23) Z { sum(i=-month+X($m)*12, 8-month+X($m)*12, 1)
 D27A(i)*cfs_taf(i)+
 D85B(i)*cfs_taf(i)+
 D88C(i)*cfs_taf(i) }

WRESL+ Reference 24 March 2013

Future Array Lookup Table Value State Variable
svar(FutureArraySize) SvarName {
 select Result from Tablename
 ⟨ given AssignmentExpression use ⟨ linear | max | min ⟩ ⟩?
 ⟨ where AssignmentExpression+ ⟩?
}

Future Array Conditional Value State Variable
svar(FutureArraySize) svarName {
 case ConditionLabel1 {
 condition ConditionalExpression
 value assignment }

 case ConditionLabel2 {
 condition ConditionalExpression
 value assignment }

……

 case DefaultConditionLabel {
 condition always
 value assignment }
}

Future Array Alias Variable Declarations and Assignments
alias(FutureArraySize) AliasName {
 ValueExpression

svar(11) D_M {select DCU_M from DCU_MAC where MON=mv($m)}

svar(FAMMonths) mv{
 case September {
 condition (month+$m)/12.0==int((month+$m)/12.0)
 value 12
 }
 case OctToAug {
 condition always
 value (month+$m)-int((month+$m)/12.0)*12
 }
}

WRESL+ Reference 25 March 2013

 kind ‘Kindspec’
 units ‘UnitSpec’
}

Future Array Goal Statements
This syntax can specify an array of constraints with minimum coding. The Future Array
Goal Statements are similar to the standard Error! Reference source not found. except for
the FutureArraySize in the parenthesis and the special symbol $m in the constraint
expression. FutureArraySize only allows either a numeric constant or a state variable that
is assigned to a numeric constant. For example, FutureArraySize of 6 will generate 6 future
goals and one current goal. The special symbol $m is used to iterate the expression from 0
to FutureArraySize.

Future Array Concise Goal Statement
goal(FutureArraySize) GoalLabel {
 ComparisonExpression
}

Future Array Simple Goal Statement
goal(FutureArraySize) GoalLabel {
 lhs ValueExpression

dvar(2) Rio_V {std kind 'FLOW' units 'CFS' }

alias(2) Mif_R { Rio_V($m) kind 'FLOW' units 'CFS'}

The above statements will generate total 3 dvars and 3 alias:

dvar Rio_V {std kind 'FLOW' units 'CFS' }

dvar Rio_V__future__1 {std kind 'FLOW' units 'CFS' }

dvar Rio_V__future__2 {std kind 'FLOW' units 'CFS' }

alias Mif_R { Rio_V 'FLOW' units 'CFS' }

alias Mif_R__future__1 { Rio_V__future__1 'FLOW' units 'CFS' }

alias Mif_R__future__2 { Rio_V__future__2 'FLOW' units 'CFS' }

goal(23) set_N_SWP { D929($m) > max(700., 0.125*AD_R($m)) }

WRESL+ Reference 26 March 2013

 rhs ValueExpression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty ValueExpression ⟩ ⟩ ⟩?
 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty ValueExpression ⟩ ⟩ ⟩? }
}

Future Array Conditional Goal Statement
goal(FutureArraySize) GoalLabel {
 lhs ValueExpression
 case CaseLabel1 {
 condition Conditional Expression
 rhs ValueExpression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩?
 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩? }

 case CaseLabel 2 {
 condition Conditional Expression
 rhs ValueExpression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩?
 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩? }

…
…

 case DefaultCaseLabel {
 condition always
 rhs ValueExpression
 ⟨ lhs>rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩?
 ⟨ lhs<rhs ⟨ constrain | ⟨ penalty Value Expression ⟩ ⟩ ⟩? }
}

goal(23) set_N_SWP {
 lhs D929($m)
 rhs max(700., 0.125*AD_R($m))
 lhs<rhs penalty 0
}

WRESL+ Reference 27 March 2013

Future Array Objective Function Statement
objective ObjectiveGroupLabel {
 [VariableName1(FutureArraySize), VariableWeightExpression]
 [VariableName2(FutureArraySize), VariableWeightExpression]
…

 [VariableNameN(FutureArraySize), VariableWeightExpression]
}

Network Statement
A network statement can make the connections between elements easier to read. It’s
currently under development.

Include Common Items in Multiple Sequences
The group statement can be used to include the same files or variables in multiple
sequences. For example, common files can be organized in a group and then that group
can be included later in other models. In the example codebox below, the common files

goal(FAMmonths) LimitR{
 lhs C129($m)
 case Janurary {
 condition mv($m)==jan .and. int(BOON_SWP)==1
 rhs W_2_OMR_target_Jan
 lhs>rhs penalty 0 }
 case February {
 condition mv($m)==feb .and. int(BOON_SWP)==1
 rhs W_2_OMR_target_Feb
 lhs>rhs penalty 0 }
 case Default {
 condition always
 rhs W_1_OMR_target_Others
 lhs>rhs penalty 0 }
}

objective XGroup {
 [X1(23), 10]
 [X2(23), 20]
 [X3(23), 30]
}

WRESL+ Reference 28 March 2013

and variables are organized into the group labeled “CommonGroup”, and are included
later in the two models “First” and “Third”.

group GroupLabel {
 Include Statement?
 Timeseries Input Declaration?
 State Variable Declarations and Assignments?
 Decision Variable Declarations?
 Alias Variable Declaration and Assignment?
 Goal Statement?
 Objective Function Statement?
}

Previous and Future Time Step Values
In state variable and goal statements, you may refer to the values of decision, alias, state,
and input timeseries variable up to 12 time periods prior to the current period.
Additionally, input timeseries variables may be accessed up to 12 time periods ahead of
the current period. Thus, the resulting values from previous time periods are available for
determining the state of the system and future input values are available for forecasting

sequence CYCLE1 { model First order 1 }
sequence CYCLE2 { model Second order 2 }
sequence CYCLE3 { model Third order 3 }
group CommonGroup {
 dvar X { std kind 'FLOW-CHANNEL' units 'CFS'}
 dvar Y { std kind 'FLOW-CHANNEL' units 'CFS'}
 include 'common\common1.wresl'
 include 'common\common2.wresl'
}
model First {
 include group CommonGroup
 include 'first\abc.wresl'
}
model Second {
 include 'second\cde.wresl'
}
model Third {
 include group CommonGroup
 include 'third\efg.wresl'
}

WRESL+ Reference 29 March 2013

purposes. This time period offset access is performed by adding a suffix to the variable
name, of the form:

 VariableName(OffsetExpression)

For example, Storage11(-2) refers to the variable Storage11 two time steps ago; and
Inflow10(4) refers to the variable Inflow10 four time steps ahead. Offset Expression uses
the same rules as Value Expression and must evaluate negative for decision and alias
variables. Omitting the suffix in parentheses causes the parser to use the value from the
current model time step.

Access Variables in Prior Sequence
Multiple models can be specified to be simulated in a particular order. The modeler
decides which parts of a system should be included in which models and the order in
which to simulate the models. The decision variable results of earlier sequences are
accessible in the later sequences by using the variable name followed by [modelName].

Intrinsic Definitions and Functions
The following definition and function names are reserved words in WRESL+ and may not
be redefined. They can be used in state variable value assignments, conditional
expressions, or any other expressions. However, decision variables may not be used as
arguments in any of the functions because decision variables’ values are unknown before
the LP problem is solved.

svar A { value S11(-12) }
svar B { value I10(3) }

sequence CYCLE1 { model Upstream order 1 }
sequence CYCLE2 { model Base order 2 }
model Upstream {
 include 'upstream\abc.wresl'
 dvar X { std kind 'FLOW' units 'CFS' }
}
model Base {
 svar Y { value X[Upstream]+100. }
 include 'base\cde.wresl'
}

WRESL+ Reference 30 March 2013

Intrinsic Functions

Name Description

cfs_taf(offset) Returns a multiplier that converts a given quantity in cubic feet
per second to thousands of acre-feet per time step where the
optional “offset” is relative time step position from the current
time step.

taf_cfs(offset) Returns a multiplier that converts a given quantity in thousands of
acre-feet per time step to cubic feet per second where the
optional “offset” is relative time step position from the current
time step.

pow(a,b) Returns the value of “a” raised to the power of “b”

abs(a) Returns the absolute value of “a”

int(a) Returns an integer representation of “a”

real(a) Returns a real/float representation of “a”

exp(a) Returns the exponential of “a” … ea

log(a) Returns the natural logarithm of “a”

log10(a) Returns the common logarithm of “a”

sqrt(a) Returns the square root of “a”

max(a,b,c,…) Returns the maximum value of a,b,c …

min(a,b,c,…) Returns the minimum value of a,b,c …

mod(a,b) Returns the remainder of “a” divided by “b”

WRESL+ Reference 31 March 2013

Intrinsic Definitions

daysin
The keyword daysin returns number of days in the current time step.

month
The keyword month returns the current month number of the water year in California.

wateryear
The keyword wateryear returns the current four-digit water year in California.

⟨MMM⟩
MMM is the three-letter abbreviation of the months, e.g., oct, nov, dec, jan, feb. It
returns the month number of the water year in California.

prev⟨MMM⟩
The keyword prev is followed by the three-letter abbreviation of the month, e.g., prevOct,
prevNov, prevDec, prevJan. This returns the time step position of the specified previous
month relative to the current month.

svar xyz {value daysin} ! in January xyz equals 31

svar xyz {value month} ! in January xyz equals 4

svar xyz {value wateryear} ! in October, 1921 xyz equals 1922

svar xyz1 {value oct} ! xyz1 equals 1
svar xyz4 {value jan} ! xyz4 equals 4

svar xyz {value prevOct} ! in December xyz equals -2
svar xyz {value prevJan} ! in December xyz equals -11
svar xyz {value prevDec} ! in December xyz equals -12

	WRESL Language Overview
	WRESL+ Updates
	Quick Start
	Notation Conventions
	Source Form
	Variable Names and Labels
	Comments
	Mathematical and Logical Operators
	Expressions
	Value Expression
	Assignment Expression
	Constraint Expression
	Comparison Expression
	Conditional Expression

	Preprocessed Expressions
	Future Array Expressions
	Sequence Statement
	Model Statements
	Include Statement
	Timeseries Input Declaration
	Decision Variable Declarations
	Continuous Decision Variable
	Bound Specification
	Binary Decision Variable
	Integer Decision Variable

	State Variable Declarations and Assignments
	Simple Value State Variable
	Sum Value State Variable
	Lookup Table Value State Variable
	Conditional Value State Variable
	Alias Variable Declaration and Assignment

	Goal Statement
	Concise Goal Statement
	Simple Goal Statement
	Conditional Goal Statement

	Objective Function Statement
	Standard Objective Function Statement
	Common Weight Objective Function Statement

	Preprocessed Statements
	Initial Statement
	If Statement

	Future Array Statements
	Future Array Decision Variable Declarations
	Future Array Continuous Decision Variable
	Future Array Binary Decision Variable
	Future Array Integer Decision Variable

	Future Array State Variable Declarations and Assignments
	Future Array Simple Value State Variable
	Future Array Sum Value State Variable
	Future Array Lookup Table Value State Variable
	Future Array Conditional Value State Variable

	Future Array Alias Variable Declarations and Assignments
	Future Array Goal Statements
	Future Array Concise Goal Statement
	Future Array Simple Goal Statement
	Future Array Conditional Goal Statement

	Future Array Objective Function Statement

	Network Statement
	Include Common Items in Multiple Sequences
	Previous and Future Time Step Values
	Access Variables in Prior Sequence
	Intrinsic Definitions and Functions
	Intrinsic Functions
	Intrinsic Definitions
	daysin
	month
	wateryear
	⟨MMM⟩
	prev⟨MMM⟩

